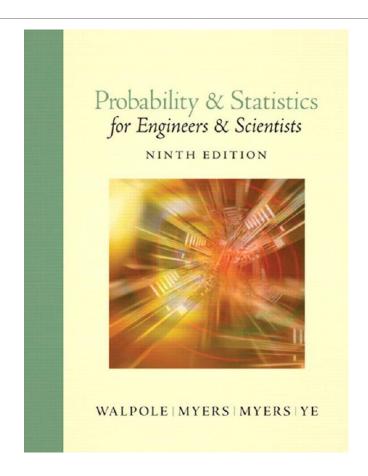
Statistical Analysis

Lecture 08

Books



PowerPoint

http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

Benha University	You are in:Home/Courses/Automata and Formal Languages Back To Courses				
Home	Ass. Lect. Ahmed Hassan A Automata And Formal Lan	Ahmed Abu El Atta :: Course Details:			
السفة العربية	Automata And Formal Languages add course edit course Automata and Formal Languages				
My C.V.	Course name	Automata and Formal Languages	M1.5%		
About	Level	Undergraduate			
Courses Publications		2018			
Inlinks(Competition)	Last year taught	Not Uploaded			
Theses	Course description	Not opioaded			
Reports	Course password				
Published books					
Workshops / Conferences Supervised PhD	Course files	add files			
Supervised MSc	Course URLs	add URLs			
Supervised Projects	Course assignments	add assignments			
Education	A				
Language skills	Course Exams &Model Answers	add exams			

One- and Two Sample Tests of Hypotheses

CHAPTER 10

10.10 One- and Two-Sample Tests Concerning Variances

One Sample Test Concerning Variance

Let us first consider the problem of testing the null hypothesis H_0 that the population variance σ^2 equals a specified value σ_0^2 against one of the usual alternatives $\sigma^2 < \sigma_0^2$, $\sigma^2 > \sigma_0^2$, or $\sigma^2 \neq \sigma_0^2$. The appropriate statistic on which to base our decision is the chi-squared statistic of Theorem 8.4, which was used in Chapter 9 to construct a confidence interval for σ^2 . Therefore, if we assume that the distribution of the population being sampled is normal, the chi-squared value for testing $\sigma^2 = \sigma_0^2$ is given by

$$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2},$$

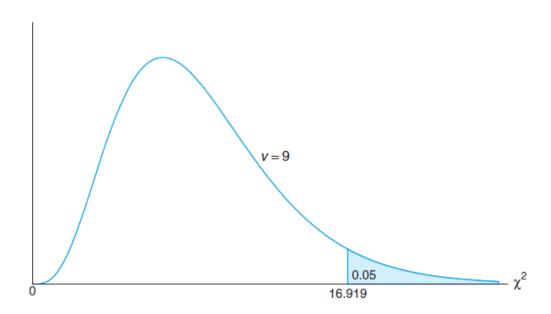
of significance, the critical region is $\chi^2 < \chi^2_{1-\alpha/2}$ or $\chi^2 > \chi^2_{\alpha/2}$. For the one-sided alternative $\sigma^2 < \sigma^2_0$, the critical region is $\chi^2 < \chi^2_{1-\alpha}$, and for the one-sided alternative $\sigma^2 > \sigma^2_0$, the critical region is $\chi^2 > \chi^2_\alpha$.

Example 10.12:

A manufacturer of car batteries claims that the life of the company's batteries is approximately normally distributed with a standard deviation equal to 0.9 year. If a random sample of 10 of these batteries has a standard deviation of 1.2 years, do you think that $\sigma > 0.9$ year? Use a 0.05 level of significance.

Solution 1. H_0 : $\sigma^2 = 0.81$. 2. H_1 : $\sigma^2 > 0.81$.

- 3. $\alpha = 0.05$.
 - 4. Critical region: From Figure 10.19 we see that the null hypothesis is rejected when $\chi^2 > 16.919$, where $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$, with v = 9 degrees of freedom.



5. Computations: $s^2 = 1.44$, n = 10, and

$$\chi^2 = \frac{(9)(1.44)}{0.81} = 16.0, \quad P \approx 0.07.$$

6. Decision: The χ^2 -statistic is not significant at the 0.05 level.

Two Samples Test Concerning Variances

Now let us consider the problem of testing the equality of the variances σ_1^2 and σ_2^2 of two populations. That is, we shall test the null hypothesis H_0 that $\sigma_1^2 = \sigma_2^2$ against one of the usual alternatives

$$\sigma_1^2 < \sigma_2^2$$
, $\sigma_1^2 > \sigma_2^2$, or $\sigma_1^2 \neq \sigma_2^2$.

For independent random samples of sizes n_1 and n_2 , respectively, from the two populations, the f-value for testing $\sigma_1^2 = \sigma_2^2$ is the ratio

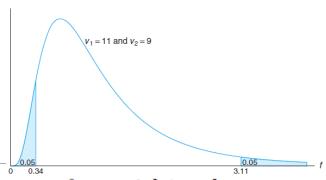
$$f = \frac{s_1^2}{s_2^2},$$

of size α corresponding to the one-sided alternatives $\sigma_1^2 < \sigma_2^2$ and $\sigma_1^2 > \sigma_2^2$ are, respectively, $f < f_{1-\alpha}(v_1, v_2)$ and $f > f_{\alpha}(v_1, v_2)$. For the two-sided alternative $\sigma_1^2 \neq \sigma_2^2$, the critical region is $f < f_{1-\alpha/2}(v_1, v_2)$ or $f > f_{\alpha/2}(v_1, v_2)$.

Example 10.13:

In testing for the difference in the abrasive wear of the two materials in Example 10.6, we assumed that the two unknown population variances were equal. Were we justified in making this assumption? Use a 0.10 level of significance.

An experiment was performed to compare the abrasive wear of two different laminated materials. Twelve pieces of material 1 were tested by exposing each piece to a machine measuring wear. Ten pieces of material 2 were similarly tested. In each case, the depth of wear was observed. The samples of material 1 gave an average (coded) wear of 85 units with a sample standard deviation of 4, while the samples of material 2 gave an average of 81 with a sample standard deviation of 5. Can we conclude at the 0.05 level of significance that the abrasive wear of material 1 exceeds that of material 2 by more than 2 units? Assume the populations to be approximately normal with equal variances.



Let σ_1^2 and σ_2^2 be the population variances for the abrasive wear of material 1 and material 2, respectively.

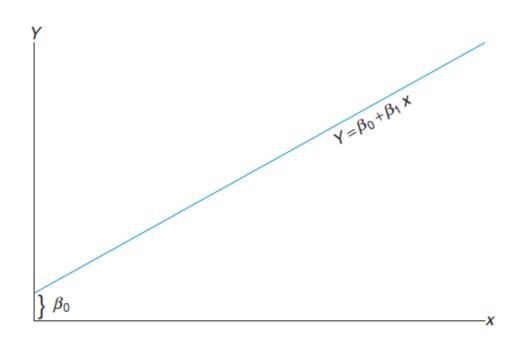
- 1. H_0 : $\sigma_1^2 = \sigma_2^2$.
- 2. H_1 : $\sigma_1^2 \neq \sigma_2^2$.
- 3. $\alpha = 0.10$.
- 4. Critical region: From Figure 10.20, we see that $f_{0.05}(11,9) = 3.11$, and, by using Theorem 8.7, we find

$$f_{0.95}(11,9) = \frac{1}{f_{0.05}(9,11)} = 0.34.$$

Therefore, the null hypothesis is rejected when f < 0.34 or f > 3.11, where $f = s_1^2/s_2^2$ with $v_1 = 11$ and $v_2 = 9$ degrees of freedom.

- 5. Computations: $s_1^2 = 16$, $s_2^2 = 25$, and hence $f = \frac{16}{25} = 0.64$.
- 6. Decision: Do not reject H_0 . Conclude that there is insufficient evidence that the variances differ.

Linear Regression



Estimating the Regression Coefficients

Given the sample $\{(x_i, y_i); i = 1, 2, ..., n\}$, the least squares estimates b_0 and b_1 of the regression coefficients β_0 and β_1 are computed from the formulas

$$b_{1} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \text{ and }$$

$$b_{0} = \frac{\sum_{i=1}^{n} y_{i} - b_{1} \sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \bar{y} - b_{1}\bar{x}.$$

Table 11.1: Measures of Reduction in Solids and Oxygen Demand

Solids Reduction,	Oxygen Demand	Solids Reduction,	Oxygen Demand
x (%)	Reduction, y (%)	x (%)	Reduction, y (%)
3	5	36	34
7	11	37	36
11	21	38	38
15	16	39	37
18	16	39	36
27	28	39	45
29	27	40	39
30	25	41	41
30	35	42	40
31	30	42	44
31	40	43	37
32	32	44	44
33	34	45	46
33	32	46	46
34	34	47	49
36	37	50	51
36	38		

Estimate the regression line for the pollution data of Table 11.1.

$$\sum_{i=1}^{33} x_i = 1104, \quad \sum_{i=1}^{33} y_i = 1124, \quad \sum_{i=1}^{33} x_i y_i = 41,355, \quad \sum_{i=1}^{33} x_i^2 = 41,086$$

Therefore,

$$b_1 = \frac{(33)(41,355) - (1104)(1124)}{(33)(41,086) - (1104)^2} = 0.903643 \text{ and}$$

$$b_0 = \frac{1124 - (0.903643)(1104)}{33} = 3.829633.$$

Thus, the estimated regression line is given by

$$\hat{y} = 3.8296 + 0.9036x.$$

